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Adverse clinical outcomes in people at clinical high-risk for
psychosis related to altered interactions between hippocampal
activity and glutamatergic function
Paul Allen1,2,3,16, Emily J. Hird 2,4,16✉, Natasza Orlov2,5,6,7, Gemma Modinos 2,8,9, Matthijs Bossong2,10, Mathilde Antoniades2,
Carly Sampson2, Matilda Azis2, Oliver Howes2,4,11,12, James Stone8, Jesus Perez13, Matthew Broome14, Anthony A. Grace15 and
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Preclinical rodent models suggest that psychosis involves alterations in the activity and glutamatergic function in the hippocampus,
driving dopamine activity through projections to the striatum. The extent to which this model applies to the onset of psychosis in
clinical subjects is unclear. We assessed whether interactions between hippocampal glutamatergic function and activity/striatal
connectivity are associated with adverse clinical outcomes in people at clinical high-risk (CHR) for psychosis. We measured
functional Magnetic Resonance Imaging of hippocampal activation/connectivity, and 1H-Magnetic Resonance Spectroscopy of
hippocampal glutamatergic metabolites in 75 CHR participants and 31 healthy volunteers. At follow-up, 12 CHR participants had
transitioned to psychosis and 63 had not. Within the clinical high-risk cohort, at follow-up, 35 and 17 participants had a poor or a
good functional outcome, respectively. The onset of psychosis (ppeakFWE= 0.003, t= 4.4, z= 4.19) and a poor functional outcome
(ppeakFWE < 0.001, t= 5.52, z= 4.81 and ppeakFWE < 0.001, t= 5.25, z= 4.62) were associated with a negative correlation between the
hippocampal activation and hippocampal Glx concentration at baseline. In addition, there was a negative association between
hippocampal Glx concentration and hippocampo-striatal connectivity (ppeakFWE= 0.016, t= 3.73, z= 3.39, ppeakFWE= 0.014, t= 3.78,
z= 3.42, ppeakFWE= 0.011, t= 4.45, z= 3.91, ppeakFWE= 0.003, t= 4.92, z= 4.23) in the total CHR sample, not seen in healthy
volunteers. As predicted by preclinical models, adverse clinical outcomes in people at risk for psychosis are associated with altered
interactions between hippocampal activity and glutamatergic function.

Translational Psychiatry (2021)11:579; https://doi.org/10.1038/s41398-021-01705-z

INTRODUCTION
The onset of psychosis is commonly preceded by a clinical high-
risk (CHR) phase, characterised by ‘attenuated’ psychotic symp-
toms and a marked decline in social and occupational functioning
[1]. This syndrome is associated with a 20–30% risk of developing
psychosis in the following 2–3 years [1–3].
Data from preclinical studies in rats suggest that the onset of

psychosis involves an increase in resting hippocampal activity
[4–6], which may be secondary to a dysregulation of hippocampal
glutamatergic neurotransmission [5, 7]. This primary hippocampal
dysfunction is then thought to drive an increase in subcortical
dopamine activity, through modulatory glutamatergic projections
from the hippocampus to striatum [6] (Fig. 1).

In line with preclinical studies, human neuroimaging studies in
CHR populations indicate that the CHR state is associated with
increased resting activity and perfusion in the hippocampus
[8–10], and with altered hippocampal activation in response to
tasks that involve salience processing [11–13] or verbal memory
[14]. There is also evidence that the concentration of glutamater-
gic metabolites in the hippocampus is altered in CHR subjects [15]
and is related to hippocampal activation during verbal memory
tasks in this group [16]. Altered hippocampal activity and striatal
functioning are associated with adverse outcomes in CHR
individuals [17]. Broadly consistent with preclinical studies [4–7],
neuroimaging studies in CHR individuals have identified altera-
tions in the functional connectivity of the hippocampus [18, 19]
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and the striatum [20, 21] with other brain areas, and in
hippocampo-striatal connectivity [12, 13]. Some of these neuroi-
maging findings in CHR samples have been linked to adverse
clinical outcomes subsequent to scanning. For example, altera-
tions in hippocampal activation [22] and glutamate levels [15]
have each been independently linked to the later onset of
psychosis.
To date, however, associations between neuroimaging mea-

sures and clinical outcomes in CHR samples have largely been
identified in studies of a single neuroimaging metric. Yet,
contemporary models emphasise the interrelated nature of
physiological and neurochemical dysfunction in the hippocampus,
and its interaction with the striatum through glutamatergic
connections [6]. Given this aetiological complexity, assessing
interactions between neuroimaging measures of different abnorm-
alities might better predict clinical outcomes in CHR subjects than
a single neurobiological measure. This is consistent with evidence
that models, which incorporate multiple variables can predict
outcomes in CHR subjects [23] and patients with psychosis [24, 25]
with greater accuracy than models based on a single variable
[26, 27]. The aim of the present case-control study was to use
multimodal neuroimaging data to examine whether clinical
outcomes in CHR participants were associated with interactions
between the hippocampal activity, glutamatergic function, and
hippocampo-striatal connectivity. We tested the hypothesis that
alterations in the relationship between these measures would be
associated with adverse subsequent clinical outcomes.

MATERIALS AND METHODS
Participants
One hundred and six individuals were recruited to the study. Seventy-five
participants were at clinical high risk of psychosis (CHR), and 31 were
healthy controls (HC). The study was approved by the National Research
Ethics Service Committee of London-Camberwell St Giles, United Kingdom.
All participants gave written informed consent. Data collection took place
between November 1, 2011, and November 1, 2017. As no previous effect
size data were available, we based our groups sizes on previous studies in
Schizophrenia populations that reported significant group effects in the
medial temporal lobe with n~20 in each group (e.g. Allen et al., 2011/12)
and a recommendation that groups of n~20 are suitable for detecting
medium effect sizes d’ ~0.05 [28]. Our control and CHR-NT groups are
these suitable sizes, but our CHR-T group is underpowered. This is because
we cannot ensure the size of an outcome group in a prospective study of
this type. We have discussed this as a limitation (see discussion).
Clinical high-risk (CHR) participants were recruited through four early

detection services for people at clinical high risk for psychosis: Outreach
and Support in South London (OASIS), the West London Early Intervention
service, the Cambridge Early Onset service (CAMEO), and the Coventry and

Warwickshire Partnership NHS trust. CHR participants were assessed using
the Comprehensive Assessment of At Risk Mental States (CAARMS) [1, 29].
Individuals were excluded from the CHR group based on the following
criteria: past/present diagnosis of psychotic disorders, past/present familiar
history of neurological illness, substance abuse/dependence as defined
using DSM-5 criteria [30], or contraindication to MRI scanning.
Healthy control (HC) participants were recruited from the same

geographical locations as CHR participants. HC participants were native
English speakers, did not have a personal or familial history of psychiatric
or neurological disorder and were not using the prescription medication as
assessed via self-report. Further exclusion criteria were self-reported illicit
substance use in the week before MRI scanning or alcohol use in the 24 h
before MRI scanning.
Premorbid IQ was assessed using the National Adult Reading Test

(NART) [31], and handedness using the Annett Handedness Scale [32].
Participants self-reported information on gender, tobacco use (number of
cigarettes smoked per day), and cannabis use (0 indicated no use; 1
indicated experimental use; 2 indicated occasional use; 3 indicated
moderate use; 4 indicated severe use).
The main outcome measures of the study were hippocampal 1H-MRS

glutamatergic and fMRI data acquired from the same participants during
the same MRI scanning sessions. These two datasets have previously been
analysed and reported separately [13, 15]. The current study included all
participants where both 1H-MRS and fMRI data were available. As such, the
final sample comprised 75 CHR participants and 31 HCs. See Table 1 for
reported demographic and clinical outcome characteristics.

Clinical measures
After recruitment, the following clinical measures were collected at King’s
College London on the day of MRI scanning by trained assessors:
psychopathology using the CAARMS [29]; overall functioning using the
Global Assessment of Function (GAF) [33], and anxiety and depression
symptoms using the Hamilton Anxiety and Depression Scale (HAM-A/HAM-
D) [34].

Clinical follow-up
CHR participants were followed-up at a mean of 18.4 months (SD=
12.8 months) after MRI scanning to determine clinical and functional
outcomes. Transition to psychosis was assessed using the CAARMS
Psychosis Threshold criteria [29] and confirmed with the Structured
Clinical Interview for Diagnosis [30], administered by a psychiatrist trained
in its use. Of the 75 CHR individuals included in the current analysis, 23
were not assessed at follow-up because they were too unwell, declined to
be interviewed, or were not contactable. In these CHR participants,
transition or nontransition to psychosis was determined from their clinical
records, but it was not possible to assess their level of functioning. To
ensure that the exclusion of three participants that were too unwell to be
followed-up did not affect the results, we conducted independent samples
t tests to compare baseline CAARMS scores in these participants with those
who were assessed at follow-up (Supplementary Table 1). We assessed
whether the follow-up period differed between clinical (transition vs.
nontransition) and functional (poor vs. good functioning) subgroups using
independent samples t tests.

MRI data acquisition and preprocessing
The present study analysed task-based fMRI data and 1H-MRS data
acquired from the same participants during the same MRI session. Details
of the fMRI novelty salience task used, scan acquisition parameters,
preprocessing, modelling of fMRI data, and the acquisition and analysis of
hippocampal 1H-MRS data have previously been described in detail in
publications that report each data modality separately [13, 15] (Supple-
mentary Fig. 1). We include the MRS scan quality parameters for the
current cohort in Supplementary Tables 2, 3 and 4. In the present study,
fMRI data analysis focused on the task contrast of novel > neutral oddball
trials during the novelty salience task, which was used as a measure of
‘pure stimulus novelty’ [13, 35].

Statistical analysis
Demographic and behavioural data. Differences between the HC and CHR
participants for age, gender and handedness were assessed using
independent sample t tests (for continuous data) or chi-square (for
categorical data) in SPSS 23 (https://www.ibm.com/uk-en/products/spss-
statistics). Alongside group comparisons of all CHR vs. HC participants, the

A) NMDA 
receptor/Glutamatergic 

dysfunc�on 

B) Hippocampal over 
ac�vity and output

C) Disinhibi�on of midbrain DA neurons  

D) Increased DA 
neuron 

ac�vity/firing 

Fig. 1 Preclinical model of the hippocampal—striatal-midbrain
circuit. A) Hippocampal glutamatergic function B) drives hippo-
campal activity and output to the striatum that C, D) deregulates
striatal dopamine function in psychosis.
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CHR group was subdivided according to clinical and functional outcomes
at follow-up. Clinical outcome groups (transition to psychosis) comprised
CHR participants that had developed psychosis (CHR-T) and those that had
not (CHR-NT). Functional outcome was defined as the GAF score at the end
of the follow-up period, with a score of >65 corresponding to a good level
of functioning (CHR-good), and a score of <65 corresponding to a poor
level of functioning (CHR-poor) [15, 36]. Group differences during the fMRI
novelty salience task, for reaction time, target recognition and error rate
were assessed using independent sample t tests in SPSS 23. Significant
results are reported at p < 0.05.

fMRI and 1H-MRS data analysis
Group x 1H-MRS interaction (effects during novel > neutral oddball trial)
To test our a-priori hypothesis, we used multivariate random-effects

GLM in SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Spe-
cifically, we tested interaction effects between Group (CHR-NT vs. CHR-T,
CHR-good vs. CHR-poor, and HC vs. CHR) and 1H-MRS Glx metabolite
concentrations on hippocampal functional activity during novel>neutral
oddball trials. We chose to use hippocampal Glx metabolite concentrations
(combined glutamate and glutamine) as i) the composite Glx peak has
been widely used as a marker of glutamatergic function because it
predominantly reflects glutamate levels, which are typically 5–6 times
higher than those of glutamine [37] and ii) a previous meta-analysis reports
robust alterations in 1H-MRS Glx metabolite concentrations in schizo-
phrenia [38]. Given our previous findings in this CHR cohort [15] additional
interaction analysis using 1H-MRS glutamate metabolite concentrations are
also reported (see Supplementary Table 5).
Current tobacco use and age were included as nuisance covariates, as in

previous analyses [13, 15]. We conducted ANOVA using hippocampal Glx
metabolite concentration as a covariate of interest, restricting the search
area to our a-priori region-of-interest within the bilateral hippocampus (AAL
in WFU Pickatlas toolbox; https://www.nitrc.org/projects/wfu_pickatlas).
The initial alpha was set to 0.005, before applying a small volume

correction (SVC) for the hippocampal region-of-interest (ROI) analysis, at a
voxel-wise threshold of peak level family-wise error (FWE) p < 0.017 [26] to
correct for three group tests, i.e. i) CHR-T vs. NT ii) CHR-good vs. CHR-poor
and iii) CHR vs. HC.

Psychophysiological Interaction
To test our a-priori hypothesis regarding the effects of Group and 1H-MRS
glutamatergic metabolite concentration on hippocampal– striatal func-
tional connectivity, we used a Psychophysiological Interaction (PPI) analysis
[39]. Based on novel>neutral oddball trials we included all subjects who
showed significant activity within the hippocampal ROI. First, eigenvariates
from the hippocampal seed region were extracted from the subject-
specific model of the Group x 1H-MRS Glx analyses described above. The
subject-specific response peak was required to be within a 6 mm radius
sphere of the right hippocampal region [x, y, z= 36, -34, -4], i.e., within the
group peak to be included in the PPI analysis. This was the case in
39 subjects (14 HC, 25 CHR). Subsequently, for each subject a PPI regressor
was created via deconvolution of the eigenvariate time series by weighting
the resultant time series with the task contrast time series (novel > neutral
oddball trials), adjusted for the effect of interest, and reconvolved with the
hemodynamic response function. The resulting contrast was submitted to
second-level random-effects GLM to test the interaction effect between
the Group and 1H-MRS Glx metabolite concentrations on hippocampal
functional connectivity. ROIs were created using an atlas composed of
functional subdivisions of the striatum (ventral, associative), which is
commonly applied in Positron Emission Tomography (PET) research [40].
We investigated functional connectivity between the hippocampus and

two striatal ROIs (ventral and associative striatum subdivisions) based on a
preclinical model highlighting ventral striatal changes in psychosis
[8, 10, 41, 42], and on reports of dopaminergic dysregulation in the
associative striatum in psychosis [43]. The SVC results were considered
significant at alpha= 0.005 and peak level FWE p (ppeakFWE) < 0.025 to
adjust for the two striatal ROI (ventral and associative striatum)
comparisons.

RESULTS
Demographic, clinical and medication data
All demographic, clinical and medication data categorised by the
group are summarised in Table 1. At baseline, the CHR group wereTa
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younger and smoked more cigarettes, had higher levels of anxiety
(HAM-A scores) and depression (HAM-D scores), and a lower level
of functioning (GAF scores) than HC. At clinical follow-up, 12 CHR
individuals (16% of the total CHR sample) had transitioned to
psychosis (CHR-T) and 63 (84%) had not (CHR-NT). At baseline, the
CHR-T group smoked fewer cigarettes than the CHR-NT group but
did not differ on any other measures (see Table 1). At follow-up,
GAF scores were available in 52 CHR participants. Seventeen CHR
participants had a follow-up GAF score >65 indicating a good
functional outcome, and 35 had a GAF score <65 indicating a poor
functional outcome. The functional outcome group did not differ
on any demographic measure (see Table 1). CAARMS and GAF
score significantly correlated (n= 49, p < 0.001, r=−0.51). The
follow-up period did not differ between subgroups: days until
follow-up in CHR-NT subjects (N= 44, M= 20 months, SD=
13.5 months) did not differ significantly from that in CHR-T
subjects (N= 11, M= 15.5 months, SD= 6.1 months) (p= 0.11),

and days until follow-up in subjects with a good functional
outcome (N= 17, M= 17 months, SD= 13.4 months) did not
differ significantly from that in subjects with a poor functional
outcome (N= 33, M= 18 months, SD= 8.8 months) (p= 0.78).

Behavioural data
During the novelty salience task, the mean reaction time for
responses to target stimuli was 544 ms (SD= 142 ms), and the
mean number of errors was 1.69 (SD= 3.1). There were no
significant group differences in mean reaction time or target
recognition time for any comparison (CHR-NT vs. CHR-T, CHR-good
vs. CHR-poor, HC vs. CHR).

MRI: Interactions between Group, hippocampal Glx and
functional activity
All Group x fMRI x 1H-MRS Glx interaction results are summarised
in Table 2. To ensure that variance was similar between the CHR-T,

Table 2. Results split by modality, comparison and lateralisation with the cluster selected for PPI analysis shaded.

Modality Comparison Significant result

fMRI x MRS 
Glx

HC > CHR
Hippocampus ROI
Right hippocampus
ppeakFWE =.052, x y z=34 -34 -6, t=3.46, z=3.35, cluster 
extent=146

HC + CHR-NT > CHR-T Hippocampus ROI
Right hippocampus
ppeakFWE =.002, x y z=36 -34 -4, t=4.46, z=4.24, cluster 
extent=140

CHR-NT > CHR-T
Hippocampus ROI
Right hippocampus [PPI cluster]

ppeakFWE =.003, x y z=36 -34 -4, t=4.4, z=4.19, cluster 
extent=93

CHR-good > CHR-poor
Hippocampus ROI
Right hippocampus  
ppeakFWE <.001, x y z=30 -12 -16, t=5.52, z=4.81, cluster 
extent=507

Left hippocampus 
ppeakFWE <.001, x y z=-26 -28 -12, t=5.25, z=4.62, cluster 
extent=585

PPI HC > CHR
Hippocampus x ventral striatum ROI
Right caudate
ppeakFWE =.016, x y z = 6 12 0, t=3.73, z=3.39, cluster 
extent = 8

Left caudate
ppeakFWE =.014, x y z = -10 12 -2, t=3.78, z=3.42, cluster 
extent = 50

Hippocampus x associative striatum ROI
Right caudate
ppeakFWE =.011, x y z = 18 -4 18, t=4.45, z=3.91, cluster 
extent = 570

Left caudate
ppeakFWE =.003, x y z = -20 12 12, t=4.92, z=4.23,  
cluster extent = 352
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CHR-NT and HC groups, we compared parameter estimates for
hippocampal fMRI activation during the main effect of the task,
which were similar (HC SD= 2.81, CHR-NT SD 2.87, CHR-T SD=
1.88).

Transition to psychosis
There was a significant interaction between group (CHR-T vs. CHR-
NT) and 1H-MRS Glx metabolite concentrations on right hippocam-
pal activation (ppeakFWE= 0.003, x y z= 36 −34 −4, t= 4.4, z= 4.19,
k= 93). In the CHR participants who later developed psychosis,
there was a negative association between Glx metabolite concen-
trations and right hippocampus activity that was not evident in the
CHR participants who did not transition to psychosis (Fig. 2A, B).

CHR-good vs. poor functional outcome
There was a significant interaction between the functional outcome
group (CHR-good vs. CHR-poor) and 1H-MRS Glx metabolite
concentrations on hippocampal activity bilaterally (ppeakFWE < 0.001,
x, y, z= 30 −12 −16, t= 5.52, z= 4.81, k= 507 & ppeakFWE= 0.001,
x, y, z=−26 −28 −12, t= 5.25, z= 4.62, k= 585). In the CHR
participants with a poor functional outcome, there was a negative
relationship between hippocampal activity and local Glx concentra-
tion. Conversely, in the CHR subjects with a good functional
outcome, this relationship was positive (Fig. 2C, D−E).

CHR vs. HC
The interaction between group (HC vs. CHR) and 1H-MRS Glx on
hippocampal activation during novel>neutral oddball trials within
the bilateral hippocampal ROI was non-significant (ppeakFWE=
0.052, x y z= 34 −34 −6, t= 3.46, z= 3.35, k= 146).

Interactions between Group, hippocampal Glx concentrations
and hippocampal–striatal connectivity
PPI analyses focused on a right hippocampal seed region
identified by the CHR-NT vs. CHR-T x 1H-MRS Glx interaction
reported above (extracted eigenvariates x y z= 36 −34 −4).
Analysis in relation to transition to psychosis and functional

outcome did not reveal any significant PPI effects for
hippocampo-striatal connectivity in either ventral or associative
striatum ROIs (p > .025 for all analyses). Analysis comparing all CHR
vs. HC participants, did reveal a significant interaction effect
between group and Glx concentration within the a-priori ventral
striatum ROI in the bilateral ventral caudate (ppeakFWE= .016, x y
z= 6 12 0, t= 3.73, z= 3.39, cluster extent = 8 and ppeakFWE=
0.014, x y z=−10 12 −2, t= 3.78, z= 3.42, k= 50). An interaction
was also observed in the a-priori associative striatum ROI in the
dorsal bilateral caudate (ppeakFWE= .011, x y z= 18 −4 18, t= 4.45,
z= 3.91, cluster extent = 570 and ppeakFWE= 0.003, x y z= -20 12
12, t= 4.92, z= 4.23, k= 352). In all these regions HC showed a
positive association between hippocampal–striatal functional
connectivity and hippocampal Glx metabolite concentrations.
Conversely, in CHR participants, this relationship was negative
(Fig. 3).

DISCUSSION
Preclinical models propose that psychosis is associated with
increased resting hippocampal activity [4–6], and altered hippo-
campal glutamate activity [5, 7] which is thought to drive an
increase in subcortical dopamine activity through glutamatergic
projections from the hippocampus to striatum [6]. In previous
studies of CHR participants, we reported reduced hippocampal
activity during a novelty salience task [13], and increased
hippocampal glutamatergic metabolite concentrations related to
clinical outcomes [15]. The present study extends these findings
and provides support for preclinical models by demonstrating that
clinical outcomes in CHR participants are also associated with
altered interactions between hippocampal glutamatergic metabo-
lite concentrations and task-related hippocampal activity. These
findings are the first in humans to show that hippocampal
glutamatergic concentrations are associated with altered hippo-
campal activity and function [7] in CHR individuals with adverse
clinical and functional outcomes. Also in line with preclinical
models, our data indicate that the relationship between
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Fig. 2 Functional activity. A Scatterplot showing interaction between Group (CHR-T vs. CHR-NT) x hippocampal Glx on right hippocampal
activation during novel > neutral oddball trials. B SPM brain map (coronal section) showing right hippocampal activation for Group (CHR-T vs.
CHR-NT) x hippocampal Glx during novel > neutral oddball trials (P FWE < .017). C and D Scatterplots showing interaction between Group
(CHR-poor vs. CHT-good) x hippocampal Glx on bilateral hippocampal activation during novel > neutral oddball trials. E) SPM brain map
(coronal section) showing bilateral hippocampal activation for Group (CHR-good vs. CHR-poor) x hippocampal Glx on novel > neutral oddball
trials (pFWE < .017).
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hippocampal Glx concentrations and hippocampal–striatal con-
nectivity was altered in CHR subjects relative to controls, although
this association did not influence clinical outcomes.
In the subgroup of CHR subjects that later developed psychosis,

there was a negative association between hippocampal Glx and
hippocampal activation. Similarly, there was a negative association
between these hippocampal measures in CHR subjects who had a
low level of functioning at follow-up. A link between this negative
association and adverse outcomes is broadly in line with our
previous findings from single modality analyses: in separate
studies, reduced hippocampal activation in CHR relative to control
subjects [13] and adverse outcomes linked to increased hippo-
campal glutamate metabolite concentrations [15]. To our knowl-
edge, our study presents the first human data to support
preclinical evidence [4–7] that the altered hippocampal activity
that predates psychosis reflects dysregulation of local glutama-
tergic transmission. As discussed by Modinos et al., (2020) the
reduced hippocampal activation we observed during novel>neu-
tral oddball stimuli in CHR participants likely reflects a ceiling
effect due to increased resting hippocampal activity in CHR
subjects [8, 10, 41]. Indeed, this was confirmed by our
supplementary analysis of Group x 1H-MRS interaction effects
which showed a positive association between hippocampal
glutamatergic metabolite concentrations and activity during

neutral > standard oddball stimuli in relation to functional
outcome (see Supplementary Table 6).
In contrast to single modality findings within the CHR group in

relation to clinical outcome, we did not find significant differences
between the whole CHR group and healthy controls. This is
unlikely to reflect a lack of statistical power, as the significant
effects relating to outcomes involved CHR subgroups with smaller
sample sizes. Rather, it may be related to the heterogeneity of
neurobiological findings in the total CHR population: previous
neuroimaging studies have reported greater differences within
CHR samples in relation to outcomes than between CHR subjects
and controls [15, 44–46].
Our prediction that the relationship between hippocampal

glutamatergic metabolite concentrations and hippocampo-striatal
connectivity would be linked to clinical outcomes was not
confirmed, although there was an effect in relation to transition
that did not survive correction for multiple testing, and our
subgroups in this analysis were small. We examined hippocampal
connectivity with the associative (dorsal) striatum due to its role in
psychosis and psychosis risk [45, 47–49], and the ventral striatum
as hippocampal glutamatergic outputs project to this subregion
[4, 6, 43]. There is also evidence for altered salience and reward
processing associated with ventral striatal activity in CHR subjects
[11, 12, 50]. In the present study, we did show; however, that

Associa�ve striatum ROI Ventral striatum ROIA

B

C

D
-5

-4

-3

-2

-1

0

1

2

3

4

5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
ip

po
ca

m
pa

l a
ct

iv
at

io
n

1H-MRS Glx 

Right cluster

HC (N=14) CHR (N=25)

ppeakFWE =.011, x y z = 18 -4 18, t=4.45, z=3.91, k= 570

-5

-4

-3

-2

-1

0

1

2

3

4

5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
ip

po
ca

m
pa

l a
ct

iv
at

io
n

Left cluster

HC (N=14)

CHR (N=25)

ppeakFWE =.003, x y z = -20 12 12, t = 4.92, z = 4.23, k = 352

-5

-4

-3

-2

-1

0

1

2

3

4

5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H
ip

po
ca

m
pa

l a
ct

iv
at

io
n

Left cluster

HC (N=14)

CHR (N=25)

ppeakFWE =.016, x y z = 6 12 0, t=3.73, z=3.39, k = 8 

-5

-4

-3

-2

-1

0

1

2

3

4

5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H

ip
po

ca
m

pa
l a

ct
iv

at
io

n
1H-MRS Glx 

Right cluster

HC (N=14)

CHR (N=25)

ppeakFWE =.014, x y z = -10 12 -2, t = 3.78, z = 3.42, k = 50

Fig. 3 Psychophysiological Interaction. ) Scatterplots showing PPI interactions between Group (CHR vs. HC) in the bilateral associative
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hippocampal Glx concentrations were associated with hippocam-
pal—striatal functional connectivity in both the ventral and the
dorsal caudate, although this effect was distributed more widely in
its dorsal portion. For both sub-regions, there was a positive
association between hippocampal Glx concentrations and func-
tional connectivity in controls, but the opposite association in CHR
subjects. Our data thus provides evidence for an association
between both the ventral and the dorsal striatum and increased
risk for psychosis.
The study has some limitations. Although the total number of

CHR participants that we examined was relatively large for a
multimodal neuroimaging study because only a minority devel-
oped psychosis subsequent to scanning, the size of this subgroup
(N= 12) was modest. We cannot therefore exclude the possibility
of Type I and Type II errors due to limited statistical power. This
issue may be addressed by conducting studies that involve a large
number of different centres, permitting the recruitment of larger
CHR samples. Further, the average follow-up period was
18.4 months. Although a longer period of follow-up would have
been ideal, meta-analysis of the incidence of psychosis in CHR
samples indicates that the majority of transitions occur within the
first 18 months, with only a relatively small number of additional
transitions occurring over the subsequent 36 months [51, 52]. A
more general limitation is that conventional 1H-MRS can provide a
measure of the mean concentration of glutamatergic metabolites
in a given region, but cannot determine which glutamatergic
synapses or receptors are involved, or whether the signal reflects
the transmitter or metabolic glutamate pools. These issues may be
addressed through the development of SPECT or PET ligands that
are specific for particular glutamate receptors [53–55], and the use
of novel MRS techniques [40]. As in previous studies [56], we
categorised outcomes in the CHR sample according to transition
status and level of function at follow-up. Although the transition
to psychosis is often associated with a low level of functioning,
this is not always the case. Moreover, many subjects who do not
progress to psychosis still have a poor functional outcome. In the
present sample, 75% of those who developed psychosis also had a
poor functional outcome, while among those who did not
become psychotic, 65% had a poor functional outcome. Finally,
we did not observe any group behavioural differences on the task.
This is not unexpected, as the study was powered to detect task-
related differences in fMRI response, rather than behavioural
effects. Thus, although our results are consistent with the notion
that salience processing is altered in CHR subjects, our evidence
was at the neural rather than the behavioural level.
Our findings have potential clinical implications. First, they

suggest that the ability of tools that are designed to help predict
clinical outcomes in CHR subjects may be improved by using
multiple, as opposed to single measures [57, 58]. Secondly, they
add to existing evidence that hippocampal activity and glutama-
tergic function represent promising targets for the development
of novel treatments for psychosis [6, 59–63].
In summary, we present the first evidence in humans, in line

with rodent models of psychosis, that hippocampal activity and
glutamatergic function are associated and that their interactions
predict clinical and functional outcomes in CHR subjects. Future
research should improve the prediction of outcomes in CHR
subjects by incorporating multiple imaging measures in the
predictive model, rather than using single risk factors alone.
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